Design and synthesis of substances regulating the activity of the cardiovascular system

Design and synthesis of compounds, regulating the activity of the cardiovascular system

 Head of the Laboratory

 Aghekyan Asya, Candidate of Chemical Sciences

ORСID:  ID 0000-0001-6151-4951

Telephone: (+37410) 285101

E-mail: aaghekyan@mail.ru

                                                                                                                

Research Directions

The laboratory focuses on the synthesis of novel compounds with antihypoxic, antiarrhithmic, antioxidant, antimonoaminoxidase, anticonvulsant and  antimicrobial activity in the series of tetrahydroisoquinoline, 1,3-benzodioxole, 1,4-benzodioxane and five-membered heterocycles with two or three heteroatoms.

The main direction of the laboratory’s research is the synthesis of new oxygen- and nitrogen-containing heterocyclic compounds that regulate the activity of the cardiovascular and central nervous systems, as well as possessing antimicrobial, antihypoxic, antimonoaminoxidase, anticonvulsant and antioxidant activity, among 1,4-benzodioxane, 4-spiro-substituted tetrahydroisoquinoline and its non-cyclized analogues.

History of the Laboratory. Founded and headed by Varduhi Afrikyan, Candidate of Chemical Sciences, in 1955. The laboratory was engaged in the synthesis of new aromatic and heterocyclic amino ethers affecting the cardiovascular system and the study of their biological properties, with the aim of revealing the relationship between chemical structure and biological activity. As a result of biological research, a number of drugs were discovered: Fubromegan, Quateron and Gangleron, which have found wide application in medical practice.

In 1970, the laboratory was headed by Doctor of Chemical Sciences, Professor Eduard Margaryan, who, expanding the scope of the research, began work in the field of synthesis of diarylpropionic acids, arylalkylamines, condensed heterocyclic systems: indole, isoquinoline, benzazepine, benzodioxane, isochroman derivatives. As a result, a number of potential drugs were discovered: Fobufol, Difalkin, Emacor, Beditin, Mesedin.

Since 2011, the laboratory has been headed by Asya Aghekyan, Candidate of Chemical Sciences, who has continued the main direction of research – the targeted synthesis of biologically active compounds from nitrogen- and oxygen-containing heterocyclic annelated systems. The results of this work have been presented in numerous scientific publications.

Current activities

  • The laboratory employs 8 highly qualified specialists, including 4 PhD

 

Best Results

Optimal conditions were developed for the synthesis of 4-spirocycloalkane-substituted tetrahydroisoquinoline derivatives containing at the second position amino- and sulfanylamide, alkanol and heterylalkyl pharmacophore fragments 

     

         Russ. J. Org. Chem., 2013, v. 49, No. 11, pp. 1632-1636. doi: 10.1134/S1070428013110122 

         Russ. J. Org. Chem., 2016, v. 52, No. 5, pp. 689-693. doi:10.1134/S1070428016050122                                                                                                               

         Russ. J. Org. Chem., 2022, v. 58, No. 11, pp. 1581-1588. doi:10.1134/S1070428022110045                                                                                                                             

         Russ. J. Org. Chem., 2019, v. 55, No. 3, pp. 302-307. doi:10.1134/S1070428019030047                                                                                                                      

         Russ. J. Org. Chem., 2015, v. 51, No. 2, pp. 221-225. doi:10.1134/S1070428015020153


✔ A new approach for the synthesis of tetrahydroisoquinoline derivatives containing two methyl groups at the fourth position based on substituted benzylamines has been proposed.

             Russ. J. Org. Chem., 2017, v. 53, No. 3, pp. 362-365. doi:10.1134/S1070428017030083 

             Russ. J. Org. Chem., 2022, v. 58, No. 10, pp. 1409-1415. doi:10.1134/S1070428022100049     

Methods for the synthesis of various derivatives of 1,4-benzodioxane containing at the second position a substituted 1,2,4-triazole ring have been developed.

           Russ. J. Org. Chem., 2017, v. 53, No. 3, pp. 428-432. doi:10.1134/S1070428017030198      

           Russ. J. Gen. Chem., 2018, v. 88, No. 4, pp. 839-842. doi:10.1134/S1070363218040345          

           Russ. J. Org. Chem., 2020, v. 56, No. 3, pp. 436-439. doi:10.1134/S1070428020030112          

           Chem. J. Armenia, 2023, v. 76 № 1-2, pp. 104-108

           Russ. J. Org. Chem., 2021, v. 57, No. 7, pp. 1068-1072. doi:10.1134/S107042802107006X          


✔ Synthesis and certain transformations of 1,4-benzodioxane and their substituted derivatives containing 1,3,4-oxadiazole and 1,3,4-thiadiazole heterocyclic rings were carried out.

               

         Russ. J. Org. Chem., 2020, v. 56, No. 3, pp. 385-389. doi:10.1134/S1070428020030033              

         Russ. J. Org. Chem., 2014, v. 50, No. 3, pp. 434-438. doi:10.1134/S1070428014030233     

         Russ. J. Org. Chem., 2024, v. 60, No. 9, pp. 1685-1691. doi:10.1134/S1070428024090100         

         Russ. J. Org. Chem., 2017, v. 53, No. 12, pp. 1905-1908. doi:10.1134/S1070428017120259           


✔ The synthesis of diamide derivatives of p-aminobenzoic acid containing an arylcycloalkane and 1,4-benzodioxane fragments was developed and implemented. 

             

            Russ. J. Gen. Chem., 2015, v. 85, No. 5, pp. 1057-1062. doi:10.1134/S1070363215050096            

            Chem. J. Armenia, 2012, v. 65, № 2, pp. 230-238                                                                                                     

            Chem. J. Armenia, 2016, v. 69, № 1-2, pp. 111-120                                                                                                                                                                        

            Russ. J. Org. Chem., 2012, v. 48, No. 7, pp. 972-976. doi:10.1134/S1070428012070147            

The synthesis of new aryloxypropanolamines based on arylcyclopentane(tetrahydropyran, dimethyl)methylamines was developed and implemented    

                 

             Russ. J. Org. Chem., 2016, v. 52, No. 2, pp. 209-213. doi:10.1134/S1070428016020081                

             Russ. J. Org. Chem., 2023, v. 59, No. 5, pp. 756-763. doi:10.1134/S1070428023050020              

             Russ. J. Org. Chem., 2024, v. 60, No. 1, pp. 18-24. doi:10.1134/S1070428024010032             

    

Various routes have been developed to synthesize different diamide derivatives of dibasic carboxylic acids (oxalic, succinic, and maleic).

                  Russ. J. Org. Chem., 2013, v. 49, No. 7, pp. 1083-1086. doi:10.1134/S1070428013070221                       

                  Chem. J. Armenia, 2012, v. 65, № 2, pp. 215-223

                  Chem. J. Armenia, 2012, v. 65, № 3, pp. 332-341

                  Chem. J. Armenia, 2013, v. 66, № 4, pp. 628-635

                  Chem. J. Armenia, 2012, v. 65, № 1, pp. 111-117

                  Russ. J. Org. Chem., 2018, v. 54, No. 6, pp. 886-891. doi:10.1134/S1070428018060106                       

                  Russ. J. Org. Chem., 2024, v. 60, No. 11, pp. 2117-2124. doi:10.1134/S1070428024110046  

 

✔ New aryl-, 1,3-benzodioxole- and 1,4-benzodioxanylcycloalkane(tetrahydropyran)carboxylic acid aminoamide and aminoester derivatives have been developed and synthesized for the first time.

        Russ. J. Gen. Chem., 2019, v. 89, No. 5, pp. 1051-1054. doi:10.1134/S107036321905027X           

        Russ. J. Org. Chem., 2024, v. 60, No. 6, pp. 1028-1035. doi:10.1134/S1070428024060071  

        Russ. J. Org. Chem., 2019, v. 55, No. 6, pp. 796-799. doi:10.1134/S1070428019060095  

        Russ. J. Org. Chem., 2025, v. 61, No. 3, pp. 403-411. doi:10.1134/S107042802560010X  

 

Methods for obtaining compounds with oxygen-containing heterocycles (1,4-benzodioxane, tetrahydropyran, furan) at the second position of the 1,3,4-oxadiazole ring have been developed.

          Russ. J. Org. Chem., 2025, v. 61, No. 1, pp. 73-79. doi:10.1134/S1070428024602966     

          Russ. J. Org. Chem., 2024, v. 60, No. 4, pp. 655-663. doi:10.1134/S1070428024040146         

          Russ. J. Org. Chem., 2020, v. 56, No. 2, pp. 281-286. doi:10.1134/S1070428020020177         

 

  ✔ Methods for the synthesis of thienopyrimidines containing fragments of 1,4-benzodioxane and phenylcyclohexanecarbonitrile have been proposed, which were carried out via the cyclization reaction of 2-amino-3-carbethoxy-substituted thiophenes.

 

                    Russ. J. Org. Chem., 2019, v. 55, No. 5, pp. 598-601. doi:10.1134/S1070428019050038         

                    Russ. J. Org. Chem., 2022, v. 58, No. 7, pp. 977-981. doi:10.1134/S1070428022070053         

                    Russ. J. Org. Chem., 2024, v. 60, No. 3, pp. 397-402. doi:10.1134/S1070428024030047         

                    Russ. J. Org. Chem., 2020, v. 56, No. 3, pp. 440-445. doi:10.1134/S1070428020030124         

                    Russ. J. Org. Chem., 2021, v. 57, No. 10, pp. 1638-1642. doi:10.1134/S1070428021100110      

   


The antihypoxic, antimonoaminoxidase, antioxidant, antiarrhythmic, anticonvulsant, and antibacterial properties of the synthesized compounds have been investigated.

            

   The best works of recent years

                

               Russ. J. Org. Chem., 2021, v. 57, No. 2, pp. 195-202. doi:10.1134/S1070428021020093         

                Russ. J. Org. Chem., 2021, v. 57, No. 7, pp. 1068-1072. doi:10.1134/S107042802107006X            

                Russ. J. Org. Chem., 2021, v. 57, No. 10, pp. 1638-1642. doi:10.1134/S1070428021100110            

                Russ. J. Org. Chem., 2022, v. 58, No. 7, pp. 977-981. doi:10.1134/S1070428022070053         

                Russ. J. Org. Chem., 2022, v. 58, No. 10, pp. 1409-1415. doi:10.1134/S1070428022100049     

                Russ. J. Org. Chem., 2022, v. 58, No. 11, pp. 1581-1588. doi:10.1134/S1070428022110045  

               Russ. J. Org. Chem., 2023, v. 59, No. 11, pp. 1884-1891. doi:10.1134/S1070428023110064  

                Russ. J. Org. Chem., 2024, v. 60, No. 1, pp. 18-24. doi:10.1134/S1070428024010032

                Russ. J. Org. Chem., 2024, v. 60, No. 3, pp. 397-402. doi:10.1134/S1070428024030047         

                Russ. J. Org. Chem., 2024, v. 60, No. 9, pp. 1685-1691. doi:10.1134/S1070428024090100           

                Russ. J. Org. Chem., 2024, v. 60, No. 4, pp. 655-663. doi:10.1134/S1070428024040146             

                Russ. J. Org. Chem., 2024, v. 60, No. 11, pp. 2117-2124. doi:10.1134/S1070428024110046           

                Russ. J. Org. Chem., 2025, v. 61, No. 1, pp. 73-79. doi:10.1134/S1070428024602966     

                Russ. J. Org. Chem., 2025, v. 61, No. 3, pp. 403-411. doi:10.1134/S107042802560010X